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1. Overview
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Challenges: General mathematical framework to integrate new technologies, e.g. UAVs and RIS, and utilize the new

degrees of freedom for resilient coexistence of communication and radar over shared spectrum.
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Observation: Avoiding interference between users at all times is too conservative in the wake of increasing demand

for throughput and dual communication and sensing functionality.

Solutions: A new paradigm in which we move from hard deterministic constraints to stochastic schemes with desired

low probability of harmful interference. Developing a stochastic optimization framework for resilient spectrum sharing .
in a communication network that includes new technologies like RIS and UAV. Extending the framework to include “ _
coexistence of communication and radar. — Sk

2. UAV and Ground Users in Cellular Networks 3. Dual-Function Radar-Communication

Beamforming with Outage Probability

Goal: A general mathematical framework for optimizing cell | )
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Goal: Develop a beamforming method for a dual-function radar-

4. Stochastic Optimizations and Approximate Solutions = e _ |
communication system despite imperfect channel state information

Dynamic spectrum allocation: Optimally Performance bound for greedy schemes: Solution: Both optimization problems are stochastic and un-
choose a string (sequence) of spectrum alloca- Determining the optimal string of policies becomes tractable. We first take advantage of central limit theorem to
tion policies to maximize a desired spectrum us- computationally intractable with increasing size obtain deterministic non-convex problems and then consider relax-
T - . : S : ations of these problems in the form of semidefinite programs with
age utility function over time: of state/action space and optimization horizon. 2ok conetrainte
_ rank- nstraints.
maximize f(.5) Therefore, we often have to resort to approximate
subject to S € T solutions. The most common approximation is the . S ——
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Here f is the utility function (e.g., expected greedy strategy, in which we sequentially select the

throughput or negative expected latency), T is the
set of all permissible strings of spectrum allocation

policy that maximizes the increment in the utility
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function at each step. We have derived a ratio

0.004 |-

Transmit Beampattern

policies over time horizon of K allocation steps. b_O””d for the.performance of greedy scheme rela- | | \
An element of T is a sequence of policies and each tive to the optional scheme. The bound guarantees T ey © O T ey otoutge

policy is a posterior density over the action space that the greedy scheme achieves at least a factor

(permissible spectrum allocations) given the cur-
rent state of the network (current allocations and [(Gr) > B, B=—= f(Gx) |
(probabilistic) interference constraints). f(Ok) 2 k1 MaXes(Gy ) ()
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of 3 of the optimal scheme.
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Probability of Outage

Multiagent sensor coverage: Activate a set of K (out of N
sensors) on an /N-point lattice to maximize the probability of detecting
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randomly occurring events in a mission space. Sensors are activated | o |
( . ‘ ) Eall I ot A tivated 8 H. Maleki, C. Diaz-Vilor, A. Pezeshki, V. Tarokh, and H.
BIVEN SPECITUmM access) sequentially over 3 Steps. A Sensor dctivate < A Jatarkhani, "Dual-Function Radar-Communication Beamforming

at location s; can detect any event at location x with probability
p(x,s;) = exp(—A;||x —s;||), where \; > 0 is the coverage decay
rate of the of the sensor at step i for i € {1,..., K}.

with Outage Probability Metric,” submitted.

5. Outreach Activity
Mini-symposium on Data-Driven Optimization of Spec-
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B. Van Over, B. Li, E. K. P. Chong, and A. Pezeshki, “A Performance | ) rum Sharing Networks and Beyond, held at UC-rvine in
_ _ _ _ Comparison of performance bounds: ffy =1 —e™! April 2025. The program included 11 technical talks, by speakers
Bound for the Greedy Algorithm in a Generalized Class of String Op- lgfr:'ci?o\:;rkéEregzzizssuén;ﬁug'xOnfotthfe::ilr'zy from NSF, Duke University, UC-Irvine, Colorado State University,
timization Problems,” |IEEE Trans. Automat. Cont., accepted. submodularity and are tighter CalTech, UCSD, USC, and UC-Dauvis.
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